

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA Chinna Amiram,Bhimavaram-534204.(AP)

B. TECH – ELECTRICAL AND ELECTRONICS ENGINEERING

Department Vision

Transforming the individuals into globally competent Electrical Engineers to accomplish the technological needs of the society.

Department Mission:

- Establishing world class infrastructure in Electrical Engineering.
- Adopting continuous improvement methods in content delivery and assessment.
- Facilitating industry institution interaction in teaching & learning, consultancy and research activities to fulfill the technological needs of the society.
- Encouraging the faculty and students to carry out innovative research and practicing ethical standards.
- Motivating the students for active participation in co-curricular and extracurricular activities.

Program Educational Objectives (PEOs) :

PEO1	Graduates will be technically sound to have vibrant careers in core & IT sector.
PEO2	Graduates will compete, sustain, lead and enhance in competitive world.
PEO3	Graduates will serve the nation by solving technical problems with professional ethics and social responsibility

Program Specific Outcomes (PSO's):

PSO1	The ability to analyse, design and implement power systems, power electronics,
	control systems using software systems.
	The ability to apply project management techniques to electrical & amp;
PSO2	Electronics systems & amp; to utilize applied differential equations, matrices,
	different transform methods, discrete mathematics in support to the program.

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA Chinna Amiram,Bhimavaram-534204.(AP)

Estd:1980

Program Outcomes (POs):

Engineering Graduates will be able to:

1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain able development.
8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9	Individual and team work: Function effectively as an individual, and as a member orleader in diverse teams, and in multidisciplinary settings.
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11	Project management and finance: Demonstrate knowledge and understanding of theengineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.
12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

Estd:1980

Chinna Amiram, Bhimavaram-534204.(AP)

Course outcomes (Cos) of all courses of all programs offered by the institution

Course '	Code: B20HS1101
	Title: ENGLISH
CO 1	Identify the context, topic and pieces of specific information by understanding and responding to the
CO-1	social or transactional dialogues spoken by native speakers of English.
CO-2	Apply suitable strategies for skimming and scanning to get the main idea of a text and locate specific
	information.
CO-3	Build confidence and adapt themselves to the social and public discourses, discussions and presentations.
CO-4	Apply the principles of writing to paragraphs, arguments, essays and formal/informal communication.
CO-5	Construct sentences using proper grammatical structures and correct word forms.
	Code: B20 BS 1101
	Title: Mathematics-I
CO-1	Solve a given system of linear algebraic equations
CO-2	Determine Eigen values and Eigen vectors of a system represented by a matrix
CO-3	Solve linear ordinary differential equations of first order and first degree.
<u> </u>	Apply the knowledge in simple applications such as Newton's law of cooling, orthogonal
CO-4	trajectories and simple electrical circuits.
CO-5	Solve linear ordinary differential equations of second order and higher order.
CO-6	Determine Laplace transform and inverse Laplace transform and solve linear ODE.
	Code: B20 BS 1102
Course'	Title: APPLIED PHYSICS
CO-1	Interpret the behavior of light radiation in interference and diffraction Phenomena and their
	applications.
CO-2	Explain the classification and properties of dielectric and magnetic materials suitable for engineering applications.
<u> </u>	Understand the basics of modern technologies lasers, optical fibers and ultrasonics and their
CO-3	utility in various fields.
CO-4	Explain the important aspects of semiconductors and electrical conductivity in them.
CO-5	Understand the basics of technology of Ultrasonics in various fields and demonstrate the synthesis and
	applications of nano materials.
	Code: B20ME1101
	Title: ENGINEERING DRAWING
CO-1	Apply principles of drawing to Construct polygons and engineering curves.
CO-2	Apply principles of Ortho graphic projections to draw the projections of points and lines.
CO-3	Apply principles of drawing to draw the projections of planes.
<u>CO-4</u>	Apply principles of drawing to draw projections of solids and their sectional views.
<u>CO-5</u>	Apply principles of drawing to draw developments and pictorial view of solids.
	Code: B20EE1101 Title: INTRODUCTION TO ELECTRICAL SYSTEMS
COurse CO-1	
	Apply basic knowledge to understand principles of power generation and its scenario in India. Identity different components of transmission and distribution sub stations and understand the Indian
CO-2	Power grid scenario.
CO-3	Apply energy conversion principles to understand operation of electrical utility components
0.0-3	Apply basic knowledge to understand operation of rectifier, Inverter, batteries and uninterrupted power
CO-4	supply
CO-5	Understand and apply the Electrical safety measures while handling electrical equipment.
Co-5 Onderstand and apply the Electrical safety measures while handling electrical equipment.	
Course Title: BASICELECTRICALSYSTEMS LAB	
COurse CO-1	Analyze the performance of AC and DC Machines by Testing.
CO-2	Conduct experiments to obtain I–V Characteristics of Solar panel
CO-2 CO-3	Measure voltage, current, power and energy in different electrical power supply systems.
CO-4	Demonstrate wiring connection for domestic uninterrupted power supply
CO-5	Analyze the safety measures in handling electrical equipment

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

<i><i><i>a</i>₂<i>i</i></i></i>		
CO-6	Calculate luminous efficiency of different light sources	
Course	Code: B20BS1107	
Course	Course Title: APPLIED PHYSICSLAB	
CO-1	Get hands on experience in setting up experiments and using the instruments/equipment individually.	
CO-2	Get introduced to using new/advanced technologies and understand their significance.	
Course Code: B20ME1102		
Course Title: WORKSHOP PRACTICE		
CO-1	Apply wood working skills in real world applications.	
CO-2	Build different parts with metal sheets in real world applications.	
CO-3	Apply fitting operations in various applications.	
CO-4	Apply different types of basic electric circuit connections.	

	Course Outcomes for First Year second Semester Course		
Course	Code: B20BS1201		
Course	Course Title: MATHEMATICS_II		
CO-1	Determine Fourier series and half range series of functions		
CO-2	Determine Fourier transforms of non-periodic functions and also use them to evaluate integrals.		
CO-3	Compute partial derivatives, total derivative and Jacobians.		
CO-4	Find maxima/minima of functions of two variables and evaluate some real definite integrals.		
CO-5	Form partial differential equations and solve Lagrange linear equation. Solve linear higher order homogeneous and non-homogeneous PDEs.		
CO-6	Find theoretical solution of one-dimensional wave equation and one-dimensional heat equation		
	Code: B20 BS 1203		
	Title: APPLIED CHEMISTRY		
CO-1	Develop polymer composites, synthetic polymers and formulation of polymers and their use in design		
CO-2	Apply the knowledge about quality of water and its treatment methods for domestic and industrial applications. Understanding the principle, mechanism of corrosion and utilization of various techniques to control.		
CO-3	Develop the knowledge of fuels and their economics, advantages and limitations. Make use of the basic concepts of semiconductors and liquid crystals for engineering applications.		
CO-4	Identify constituents of various ceramic materials, characteristics and their appropriate use in construction. Apply the knowledge of electro chemistry principles to design energy storage		
	Code: B20 CS 1201		
	Title: PROGRAMMING FOR PROBLEM SOLVING USING C		
CO-1	Apply Precedence and Associativity rules to evaluate Expressions.		
CO-2	Make use of Decision Making and Looping statements to solve various problems in C		
CO-3	Illustrate the importance of Arrays and Strings and to apply various operations on them.		
CO-4	Solve various problems by making use of Structure and Union concepts		
CO-5	Design and implement programs to analyze the different pointer applications		
CO-6	Develop programs using Functions and Pointers.		
Course	Code: B20CS1204		
Course	Title: DIGITAL COMPUTER FUNDAMENTALS		
CO-1	Understand various hardware and software components of computers		
CO-2	Distinguish different input/output devices and memory devices of computers		
CO-3	Know the importance of CPU in computers		
CO-4	Distinguish various types of software		
CO-5	Know various types of computer networks and security issues		
Course	Code: B20ME1204		
Course	Title: PRIMEMOVERS AND PUMPS		
CO-1	Apply the concepts of air standard cycles in internal combustion engines.		
CO-2	Compute various thermodynamic processes under gone by steam by using Mollier chart and steam tables.		
	Compute the efficiencies of steam and gas power plants.		
CO-4	Apply the concepts of fluid mechanics to understand the working of turbines and pumps		
	Code: B20 BS 1208		
Course	Title: APPLIED CHEMISTRY LAB		
CO-1	Gain technical knowledge of measuring, operating and testing of chemical instruments and equipments. Carrying out different types of chemical reactions for analyzing different materials in micro level quantities.		

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

CO-2	Analyze and generate experimental skills to enhance the analytical thinking capabilities in the modern
C	trends in engineering and technology.
	Code: B20 HS1202
	Title: COMMUNICATION SKILLS LAB
CO-1	Apply their linguistic competence in all LSRW skills to professional and personal settings.
CO-2	Apply communication skills through various language learning activities to their advancement in academics and competitive examinations.
CO-3	Draft job application letters, E-Mail messages and other writing discourses.
CO-4	Adopt a professional etiquette in formal settings.
CO-5	Improve fluency and clarity in both spoken and written English.
Course	Code: B20CS1205
Course	Title: PROGRAMMING FOR PROBLEM SOLVING USING C LAB
CO-1	Write, Trace and Debug the programs and correct syntax and logical errors.
CO-2	Solve various Problems by making use of Arrays, Strings, Structures, Unions and Pointers
CO-3	
CO-4	Apply various File I/O operations
Course	Code: B20MC1201
Course	Title: ENVIRONMENTAL SCIENCE
CO-1	Bring awareness among the students about the nature and natural ecosystems
CO-2	Sustainable utilization of natural resources like water, land, energy and air
CO-3	Resource pollution and over exploitation of land, water, air and catastrophic (events) impacts of climate change, global warming, ozone layer depletion, marine, radioactive pollution etc to inculcate the students about environmental awareness and safe transfer of our mother earth and its natural resources to the next generation
CO-4	Constitutional provisions for the protection of natural resources
CO-5	Green technologies and its applications

	Course Outcomes for Second Year First Semester Course	
Course	Code: B20 BS 2101	
Course	Title: Numerical Methods & Vector Calculus	
CO-1	Determine a real root of an algebraic or transcendental equation. Fit an interpolation formula and	
	perform interpolation for equally spaced and unequally spaced data.	
CO-2	Evaluate numerically certain definite integrals. Solve a first order ordinary differential equation by Euler and RK methods	
CO-3	Evaluate double integrals and determine the areas.	
CO-4	Evaluate triple integrals and determine the volumes.	
CO-5	Find the gradient of a scalar function, divergence and curl of a vector function.	
CO-6	Solve simple problems using vector integral theorems.	
004100	Code: B20EC2101	
	Title: ELECTRONIC DEVICES AND CIRCUITS	
CO-1	Analyze the characteristics and operation of Diode, BJT	
CO-2	Deduce the stability factors of different biasing circuits of BJT	
CO-3	Analyze the characteristics and operation of JFET and MOSFET	
CO-4	Design the small signal BJT single stage amplifiers.	
0 0 0 0 0	Code: B20EE2101	
Course	Title: NETWORK ANALYSIS	
CO-1	Understand electric circuit laws and Apply theorems to solve electrical networks.	
CO-2	Analyze the transient behavior of electrical networks using differential equation, and understand the	
	concept of dot convention	
CO-3	Understand AC fundamentals and Solve R, L, C network with sinusoidal excitation.	
CO-4	Understand the concept of electrical resonance and also able to solve three- phase circuits under balanced and unbalanced condition.	
CO-5	Apply two-port network analysis for devices like amplifiers, transmission lines and	
0.0-3	understand the concept of network functions, poles and zeros.	
Course	Code: B20EE2102	
Course	Title: ELECTROMAGNETIC FIELD THEORY	
CO-1	Compute the electrostatic forces and electric field intensity for given charge configuration by applying Vector Calculus/Coulomb's / Gauss's law.	

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A'

Chinna Amiram, Bhimavaram-534204.(AP)

Calculate the Electric Potential, Energy and discriminate the conductors and dielectrics by its properties, Laplace's and Poisson's equations.

Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

Estd:1980

CO-2

CO-3	Calculate the Magnetic field intensity by applying Biot-Savart's/ Ampere's law
CO-4	Illustrate the properties of magnetic materials and find the Magnetic potential and energy
CO-5	Derive Maxwell's equations and apply them to Analyze the EM wave in different domains and compute
	average power density
	Code: B20EE2103
	Title: ELECTRICAL MACHINES-I
	Apply the concepts of electro mechanical energy conversion to understand the construction and working principle of DC machine.
CO-2	Analyze the performance characteristics of DC Machines using EMF and torque equations and understand the concepts of armature reaction and commutation.
	Analyze the performance of DC Machines using various tests and understand the starting and speed control methods
	Understand the construction and operating principle and analyze the performance of transformer using various tests and its characteristics using phasor diagram, equivalent circuit.
	Illustrate the constructional details, connections, parallel operation and cooling methods of a $3-\Phi$ transformer and understand the construction and operating principle of auto-transformer
Course	Code: B20EE2104
Course	Title: NETWORKS LABORATORY
	Apply the concept of theorems and analyze responses in D.C resistive network
	Justify resonance concept for series R-L-C circuit.
	Determine parameters of two port networks.
	Determine parameters of iron cored inductor
	Determine phasor values in series R-L-C circuit Code: B20EE2104
	Title: MATLAB SIMULATION LABORATORY
	Apply MATLAB Programming to solve simultaneous linear and nonlinear equation
	Apply MATLAB Programming, simulation to solve differential equations and function minimization using optimization
	Apply MATLAB Programming to Analyze the series resonance and transient response of RLC network
	Apply MATLAB simulation to obtain the single-phase diode rectifier and DC Shunt motor characteristics
	Analyze the performance of Three phase circuits, Solar power system by MATLAB simulation
	Code: B20EC2105
	Title: ELECTRONIC DEVICES AND CIRCUITS LAB WITH SIMULATION
	Apply the concepts of different electronic devices to verify their characteristics and measure the important parameters.
	Analyze the performance of rectifier circuits with and without filters.
	Analyze the performance of BJT and FET amplifier circuits
CO-4	Simulation and Design of small electronic circuits using BJT and FET.
	Code: B20EE2106
Course	Title: SOLAR ENERGY SYSTEMS LABORATORY
CO-1	Demonstrate PV Panels erection, connections, Solar energy extraction and Solar power Measurement.
CO-2	Explain the working principle of solar equipment like cooker, street lights etc.
CO-3	Installation of roof top solar PV panels and understand their maintenance
	Plan to estimate required number of PV panels for given domestic load
	Integrate MPPT device and Net metering for the solar power
Course	Code: B20MC2102
Course	Title: PROFESSIONAL ETHICS AND HUMAN VALUES
CO-1	Identify and analyze an ethical issue in the subject matter under investigation or in a relevant field
	Identify the multiple ethical interests at stake in a real-world situation or practice
	Articulate what makes a particular course of action ethically defensible
	Assess their own ethical values and the social context of problems.
	Identify ethical concerns in research and intellectual contexts including academic integrity use and citation
	of sources the objective presentation of data and the treatment of human subjects
	Demonstrate knowledge of ethical values in non classroom activities such as service learning, internships, and field work.
CO-7	Integrate, synthesize, and apply knowledge of ethical dilemmas and resolutions in academic settings including focused and interdisciplinary research

Course Outcomes for Second Year Second Semester Course Course Code: B20BS2204 Course Title: COMPLEX VARIABLES AND STATISTICAL METHODS

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

	Comprehend the concept of Analytic function and apply in Electrostatics and Fluid dynamics
	Determine Laurent series of functions about isolated singularities, and determine residues.
	Use the residue theorem to evaluate certain real definite integrals.
	Formulate and solve linear difference equations.
	Use Z-transforms to solve linear difference equations with constant coefficients.
	Identify a random variable as discrete/continuous, find its expected value and also fit a
	probability distribution for a given frequency distribution.
	Decide the test applicable and apply it for giving inference about Population Parameter
	based on sample statistic for some large samples and small samples.
	Code: B20EC2201
	Title: ELECTRONIC CIRCUIT ANALYSIS AND DESIGN
	Outline the concepts of multistage amplifiers, feedback amplifiers, power amplifiers, tuned
	amplifiers, operational amplifiers and oscillators.
	Apply the concepts in the realization of practical circuits.
	Analyze and design practical electronic circuits using amplifiers, oscillators and operational
	amplifiers. Code: B20EE2201
	Title: ELECTRICAL MACHINES-II
	Illustrate the constructional features of AC rotating machines, MMF distribution in air-gap,
	Rotating Magnetic field and calculate generated voltage.
	Compute voltage regulation and analyze the power angle characteristics of salient and Non
	salient pole synchronous generator.
	Explain Parallel operation of synchronous generator and Analyze characteristics of salient
	pole synchronous motor and explain the starting methods of synchronous motor.
CO-4	Illustrate the operation of three phase induction motor and apply the slip-torque equations i
	Analyzing the performance of 3Φ Induction Motor
	Demonstrate the starting and speed control of $3-\Phi$ induction motor, operation of single-
	phase induction motor and its starting methods.
	Code: B20EE2202
	Title: ELECTRICAL POWER GENERATION, TRANSMISSION & DISTRIBUTION Describe the power generation from different energy sources, tariffs and Economic aspects
	Apply Kelvin's law and analyze different type's transmission and distribution networks.
	Calculate Inductance & Capacitance of transmission lines
	Determine the performance of short, medium and long transmission lines.
	Explain the mechanical and electrical design aspects of transmission system
	Code: B20EE2203
	Title: ELECTRICAL MEASUREMENTS AND INSTRUMENTATION
CO-1	Examine the operation of moving coil, moving iron and dynamometer type instruments for
	measuring electrical quantities such as voltage, current, power, energy and power factor.
CO-2	Analyze the compensation techniques for accurate measurement and extension of range of
	measurement
CO-3	Analyze the usage of different bridges for the measurement of Resistance, Capacitance,
	Inductance and Frequency.
	Examine the operation of different transducers for measuring non-electrical quantities such
	as displacement, pressure and temperature.
	Interpret the usage of CRO, ADC and DAC.
	Code: B20EC2206
	Title: ELECTRONIC CIRCUIT ANALYSIS AND DESIGN LAB WITH SIMULATION Apply the concepts of amplifier analysis to verify their characteristics and measure the
$(C()_{-})$	
	important parameters
	important parameters. Analyze the performance of power amplifiers
CO-2	Analyze the performance of power amplifiers.
CO-2 CO-3	

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

Estd:1980

	Title: ELECTRICAL MEASUREMENTS AND INSTRUMENTATION LABORATORY
	Determine the quality factor of inductance using Anderson and Maxwell Bridge
CO-2	Examine the necessity of calibration for wattmeter, energy meter, LVDT, Thermocouple
	and Strain Gauge.
CO-3	Analyze the experimental setup for measuring resistance, capacitance, power, and energy
	and evaluate the importance of accuracy in measuring devices.
CO-4	Examine the operation of transducers for measuring displacement, temperature and force
CO-5	Test for the dielectric strength of oil and select the oil based on quality
	Code: B20EE2205
	Title: ELECTRICAL MACHINES- I LABORATORY
CO-1	Conduct Load tests on DC motors and Hopkinson's test to Analyze the efficiency
	performance of DC Shunt and DC series motors
CO-2	Conduct OC and SC tests and Load test on transformer to Analyze the regulation and
<u> </u>	efficiency performance of the transformer.
CO-3	Conduct Swinburn's test and Sumpner's test to Predict the Efficiency performance of Dc
	shunt machine and Transformer.
CO-4	Conduct OCC on DC Shunt generator and Load test on DC compound generator to
	Determine the open circuit characteristics and over compound and under compound
<u> </u>	characteristics.
CO-5	Conduct a test on Speed control of a DC shunt motor to Analyze the Speed characteristics
0	of DC shunt motor
	Code: B20EE2206 Title: SMART SYSTEMS LABORATORY
	Identity different components of IoT Networks
CO-2	Interface various sensors to Processor boards
00-5	Apply various IoT network protocols to communicate between sensors and machines wirelessly
CO-4	
CO-5	Connect the devices using web and internet in the IoT environment.
	Develop automation of a system using IoT devices Code: B20MC2201
	Title: ENGLISH PROFICIENCY
	Improve speaking skills.
CO-2	Enhance their listening capabilities
CO-3	Learn and practice the skills of composition writing
CO-4	Enhance their reading and understanding of different texts
CO-5	Improve their communication both in formal and informal contexts.
CO-6	Be confident in presentation skills.
	be confident in presentation skins.

	Course Outcomes for Third Year First Semester Course	
Course	Course Code: B20EE3101	
	Title: SIGNALS AND SYSTEMS	
CO-1	Apply the properties of continuous time and discrete time signals and systems to classify	
	them	
	Apply convolution to analyze CT and DT systems in the Time domain	
	Analyze the spectral characteristics of periodic signals using Fourier series analysis	
CO-4	Apply Fourier Transform to analyze the systems.	
CO-5	Analyze discrete time signals and systems using Z-Transforms and apply sampling theorem	
	for signal conversion.	
	Course Code: B20EE3102	
Course	Course Title: POWER SYSTEMS ANALYSIS AND STABILITY	
CO-1	Compute the p.u. reactance and draw the per unit reactance diagram of a power system	
CO-2	Apply the load flow techniques to analyze load flow problems in the power system	

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

CO-4 CO-5 Course	Compute short circuit MVA and analyze symmetrical fault currents and voltages in a power system. Determine the symmetrical components and un-symmetrical fault currents in a power system Derive swing equation and apply equal area criterion to analyze steady-state and transient
CO-5 Course	system
Course	Derive swing equation and apply equal area criterion to analyze steady-state and transient
Course	stability of a power system.
	Code: B20EE3103
	Title: POWER ELECTRONICS
CO-1	Illustrate thyristor characteristics, turn on and turn off methods, protection circuits and
	modern power semiconductor devices.
CO-2	Illustrate the phase-controlled rectifiers with different loads.
CO-3	Analyze the operation of choppers
CO-4	Explore the Cyclo-converter and AC voltage Controller configurations.
CO-5	Analyze the inverter operation, performance parameters and PWM techniques.
Course	Code: B20EE3104
Course	Title: SOLAR AND WIND ENERGY SYSTEMS
CO-1	Apply the fundamental principles to understand the solar geometry, operation of solar cell
	and analyze its Characteristics, equivalent circuit parameters.
	Design a PV Module and analyze series and parallel interconnection schemes
CO-3	Apply the MPPT techniques and analyze the Operating range of Buck, Boost and Buck-
	Boost converters.
CO-4	Apply the fundamental of wind energy systems to illustrate the wind turbine operation and control.
CO-5	Illustrate various configurations of wind energy conversion systems.
Course	Code: B20EE3105
	Title: SENSORS AND TRANSDUCERS
	Apply the principles to understand the characteristics & classification of Sensors and Transducers
	Explore the concepts and construction of Electromechanical and Radiation Sensors
	Explore the concepts and construction of Thermal sensors
	Explore the concepts and construction of Magnetic sensors
	Illustrate the Recent Trends in Sensor Technologies and applications
	Code: B20EE3106
	Title: SPECIAL ELECTRICAL MACHINES
	Illustrate the principle of operation and control of different stepper motors.
	Acquire the knowledge of operation and control of Permanent Magnet Brushless DC Motor
	Illustrate the operation and control of Permanent Magnet Synchronous motor.
	Acquire the knowledge of operation and control of Switched reluctance Motor.
	Illustrate the operation and control of Synchronous reluctance Motor. Code: B20EE3107
	Title: POWER QUALITY
	Acquire the knowledge of power quality issues and power quality parameters
	Illustrate the sources of transient over voltages and protection techniques
	Analyze filters for controlling harmonic distortion.
	Analyze long duration voltage variations and regulation of voltage variations.
	Explore power quality aspects and protection in distributed generation.
	Code: B20EE3108
	Title: ELECTRICAL MACHINES-II LABORATORY
	Investigate the voltage regulation of an alternator by using EMF, MMF and ZPF methods
	Analyze the performance characteristics of Line excited induction generator and
	Synchronous motor
CO-3	Analyze the performance characteristics of a $3-\Phi$ and $1-\Phi$ Induction motors.
	Determine Xd & Xq and sequence reactances of a Synchronous machine.
CO-4	Conduct an experiment on BLDC motor to obtain speed – torque characteristics.

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

J	
	e Title: POWER ELECTRONICS LABORATORY
CO-1	Analyze the characteristics of semiconductor devices
CO-2	Analyze the triggering and commutation methods for SCR
CO-3	Investigate the performance of Controlled rectifiers, DC-DC converters, AC voltage
	controllers and cycloconverter
CO-4	Examine the performance of single phase and three phase inverters.
CO-5	Investigate the speed control of AC and DC drives using power electronic converters.
	e Code: B20EE3110
	e Title: PYTHON PROGRAMMING LABORATORY
CO-1	Write, Test and Debug Python Programs
CO-2	Implement Conditionals and Loops for Tython Trograms
CO-3	Use functions and represent Compound data using Lists, Tuples and Dictionaries
CO-4	Use python basic libraries in programming
	e Code: B20MC3101
	e Title: EMPLOYABILITY SKILLS PART-A
CO-1	Detect grammatical errors in the text/sentences and rectify them while answering their
	competitive/company specific tests and frame grammatically Correct sentences while
	writing.
CO-2	Answer questions on synonyms, antonyms and other vocabularybased Exercises while
	attempting CAT, GRE, GATE and other related tests.
CO-3	Use their logical thinking ability and solve questions related to analogy, Syllogisms, and
	other reasoning-based exercises.
CO-4	Choose the appropriate word/s/phrases suitable to the given context in order to make the
	sentence/paragraph coherent.
	PART-B
CO-1	The students will be able to perform well in calculating on number problems and various
	units of ratio concepts
CO-2	The students will be able to solve problems on time and distance and units related solutions
CO-3	The students will become adept in solving problems related to profit and loss, in specific,
	quantitative ability
CO-4	The students will present themselves well in the recruitment process using analytical and
	logical skills which he or she developed during the course as they are very important for any
	person to be placed in the industry
CO-5	The students will earn to apply Logical thinking to the problems of Syllogisms and be able
	to effectively attempt competitive examinations like CAT, GRE, GATE for further studies
L	

Course Outcomes for Third Year Second Semester Course			
Course Code: B20EE3201			
Course	Course Title: LOGIC DESIGN AND MICROPROCESSORS		
CO-1	Explore number systems, binary athematic and apply the Boolean algebra for simplifying		
	the Boolean expressions.		
CO-2	Design of combinational logic circuits using K – maps		
CO-3	Implement Flipflops using gatesand design synchronous counters and shift registers.		
CO-4	Illustrate the architecture of 8085 Microprocessor and its operation and timing diagrams.		
CO-5	Interface various I/O devices to 8085 Microprocessor using 8251, 8253, 8255, 8279		
0.5	peripheral devices and A/D & D/A converters.		
	Course Code: B20EE3202		
Course Title: CONTROL SYSTEMS			
CO-1	Model electrical and mechanical physical systems by applying laws of physics and derive		
	transfer functions from block diagrams & Signal Flow Graphs		
CO-2	Analyze systems in time domain for transient and steady-state behavior		
CO-3	Analyze the stability of a system by RH criterion and Root locus.		
CO-4	Analyze the behavior of system using frequency response plots.		

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

 CO-5 Model and analyze the LTI system using state space approach. Course Code: EXPHES20 Course Title: UNIVERSAL HUMAN VALUES-2: UNDERSTANDING HARMONY CO-1 Students are expected to become more aware of themselves, and their surroundings (family society, nature) CO-2 They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. CO-3 They would have better critical ability. CO-4 They would have better critical ability. CO-4 They would also become sensitive to their commitment towards what they have understood (human values, human relationships and human society). CO-5 It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction. COurse Title: FOWER ELECTRONIC DRIVES CO-1 Select suitable converter for motor drives & & & provide the load requirements. CO-3 Apply and analyze hedynamics of electric drive and demonstrate the operation of drive to meet the load requirements. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-6 Hyply and analyze chopper fed DC drives with closed loop control. CO-6 Explore the types of Loads and Load Characteristics CO-1 Explore the types of substations and cables CO-4 Apply and analyze tho gran and provide and provide compensation for power factor correction and voltage control in a distribution systems CO-6 Apply various protective devices and its coordination techniques to distribution systems CO-7 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-8 Apply various protective devices and its coordination techniques to distribution systems CO-9 Apply appling theorem to analyze the Dis		
Course Title: UNIVERSAL HUMAN VALUES-2 : UNDERSTANDING HARMONY CO-1 Students are expected to become more aware of themselves, and their surroundings (family society, nature) CO-2 They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. CO-3 They would have better critical ability. CO-4 They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). CO-5 It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction. CO-1 Select suitable converter for moor drives & dexplore different electric starting and braking methods CO-4 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Apply and analyze chopper fed DC drives with continuous current mode operation. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes CO-6 Explore the types of Loads and Load Characteristics CO-7 Apply and analyze	CO-5	Model and analyze the LTI system using state space approach.
 CO-1 Students are expected to become more aware of themselves, and their surroundings (family society, nature) CO-2 They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. CO-3 They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). CO-4 They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). CO-4 They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). CO-4 They would be made in real life, at least a beginning would be made in this different day-to-day settings in real life, at least a beginning would be made in this different Bab@E203 Course Title: POWER ELECTRONIC DRIVES CO-4 Select suitable converter for motor drives & explore different electric starting and braking methods CO-3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Japly and analyze rectifier fed DC drives with closed loop control. CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes CO-4 Malyze the dsign considerations of primary and secondary distribution system CO-4 Analyze the design considerations of primary and secondary distribution system CO-4 Hutter types of Loads and Load Characteristics CO-4 Malyze the design considerations of primary and secondary distribution system CO-4 Analyze the design considerations of primary and secondary distribution system CO-4 Malyze the design considerations of primary and secondary distribution system CO-4 Analyze the design considerations of p		
society, nature) CO-2 They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. CO-3 They would have better critical ability. CO-4 They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). CO-5 It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction. COurse Title: FOWER ELECTRONIC DRIVES Course Title: FOWER ELECTRONIC DRIVES CO-1 Select suitable converter for motor drives & explore different electric starting and braking methods CO-2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO-3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Title: ELECTRICAL DISTRIBUTION SYSTEMS Cool-1 CO-4 Apply and analyze notige control in a distribution system CO-5 Analyze the design considerations of primary and secondary distribution systems		
 Solutions, while keeping human relationships and human nature in mind. CO-3 They would have better critical ability. CO-4 They would have better critical ability. CO-4 They would also become sensitive to their commitment towards what they have understood human values, human relationship and human society). CO-5 It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction. Course Title: POWER ELECTRONIC DRIVES Course Title: POWER ELECTRONIC DRIVES Course Title: POWER ELECTRONIC DRIVES CO-2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO-3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-5 Apply and analyze chopper fed DC drives with closed loop control. CO-6 Explore the types of Loads and Load Characteristics CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-5 Apply sarnous protective devices and its coordination techniques to distribution system CO-6 CO-6 Explores theypes of substations and cables CO-7 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-1 Apply Sampling theorem to analyze the Discrete sequence. CO-4 Apply FFT algorithms to find the DFT of Discret sequence. CO-4 Apply FFT algorithms to find the DFT of Discret sequence. CO-4 Design the FIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length eff		Students are expected to become more aware of themselves, and their surroundings (family, society, nature)
 CO-3 They would have better critical ability. CO-4 They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). CO-5 It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction. Course Tide: POWER ELECTRONIC DRIVES Course Tide: POWER ELECTRONIC DRIVES CO-1 Select suitable converter for motor drives & explore different electric starting and braking methods CO-2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO-4 Apply and analyze rectifier fed DC drives with closed loop control. CO-4 Apply and analyze rectifier fed DC drives with closed loop control. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-4 Investigate the control strategies for Induction motor Drives and slip power recovery schemes. Course Code: B20EE3204 Course Tide: ELECTRICAL DISTRIBUTION SYSTEMS CO-2 Analyze the design considerations of primary and secondary distribution systems CO-4 Hustrate types of Loads and Load Characteristics CO-4 Illustrate types of substations and cables CO-4 Apply various protective devices and its coordination techniques to distribution system <th>CO-2</th><th>They would become more responsible in life, and in handling problems with sustainable</th>	CO-2	They would become more responsible in life, and in handling problems with sustainable
 CO-4 They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). CO-5 It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction. Course Code: B20EE3203 Course Code: B20EE3203 Course Code: B20EE3203 Course Code: B20EE3204 Course Code: B20E2305 Course Code: B20E2306 Course Code: B20E2305 Course Code: B20E2305 Course Code: Code Code Code Code Code Code Code Code	CO-3	They would have better critical ability.
 CO-5 It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction. Course Code: B20E5203 Course Title: POWER ELECTRONIC DRIVES CO-1 Select suitable converter for motor drives & explore different electric starting and braking methods CO-3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Apply and analyze rectifier fed DC drives with closed loop control. CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 Explore the types of Loads and Load Characteristics CO-3 Apply and analyze on power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Apply various protective devices and its coordination techniques to distribution system CO-5 Apply various protective devices and its coordination techniques to distribution system CO-6 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-1 Apply Sampling theorem to analyze the Discrete sequence. CO-3 Apply FT algorithms to find the DFT of Discrete sequence. CO-4 Apply FT algorithms to find the DFT of Discrete sequence. CO-5 Apply Pierry Logitor Design Intelligent Controllers for Electrical Systems CO-4 Apply Genetic Algorithm to Identify Dytimal Solutions of Engineering Problems CO-4 Apply Genetic Algorithm to Identify Dytimal Solutions of Engineering Problems CO-5 Apply Pierzy Logit to Design Intelligent Controllers for Electrical Systems CO-6 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-6 Apply	CO-4	They would also become sensitive to their commitment towards what they have understood
 different day-to-clay settings in real life, at least a beginning would be made in this direction. Course Odie B20E5203 Course Title: POWER ELECTRONIC DRIVES CO-1 Select suitable converter for motor drives & explore different electric starting and braking methods CO-2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO-4 Apply and analyze rectifier fed DC drives with closed loop control. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-4 Investigate the control strategies for Induction motor Drives and slip power recovery schemes CO-2 Course Code: B20E5204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-2 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Apply various protective devices and its coordination techniques to distribution system CO-5 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Apply various protective devices and its coordination techniques to distribution system CO-6 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters Course Title: DIGITAL SIGAL PROCESSING CO-4 Analyze discrete sequences CO-4 Apply FFT algorithms to find the DFT of Discrete sequence. CO-5 Design the IIR filter by considering the given specifications. CO-6 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter.<th></th><th></th>		
Course Code: B2DES203 Course Title: POWER ELECTRONIC DRIVES COI Select suitable converter for motor drives & explore different electric starting and braking methods CO2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO4 Apply and analyze tectifier fed DC drives with closed loop control. CO5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO4 Elaptore the types of Loads and Load Characteristics CO4 Explore the types of Loads and Load Characteristics CO4 Englore the types of substations and cables CO4 Elaptore the types of substations and cables CO4 Illustrate types of substations and cables CO4 B10gtampling theorem to analyze the Discrete time signals, systems and realize digital filters Gurse Title: DIGTAL SIGNAL PROCESSING CO4 Analyze discrete signals in the frequency domain and comput		different day-to-day settings in real life, at least a beginning would be made in this
 Course Title: POWER ELECTRONIC DRIVES CO-1 Select suitable converter for motor drives & explore different electric starting and braking methods CO-2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO-4 Apply and analyze rectifier fed DC drives with closed loop control. CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Title: ELECTRICAL DISTRIBUTION SYSTEMS Course Title: ELECTRICAL DISTRIBUTION SYSTEMS Course Totte: ELECTRICAL DISTRIBUTION Systems CO-4 Analyze the design considerations of primary and secondary distribution systems Consume voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-5 Apply various protective devices and its coordination techniques to distribution system CO-6 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE2305 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter CO-3 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-4 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Opti		
 CO-1 Select suitable converter for motor drives & explore different electric starting and braking methods CO-2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO-3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Apply and analyze rectifier fed DC drives with closed loop control. Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-4 Illustrate types of substations and cables CO-4 Inlustrate types of substations and cables CO-4 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-4 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FR filter by considering the given specifications. CO-6 Design the FR filter by considering the given specifications. CO-6 Apply FT algorithms to find the DT of Discrete sequence. CO-6 Apply FT algorithms to find the DT of Discrete sequence. CO-6 Design the FR filter by considering the given specifications. CO-6 Design the FR filter by considering the given specifications. CO-6 De		
methods CO-2 Analyze the dynamics of electric drive and demonstrate the operation of drive to meet the load requirements CO-3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-4 Apply and analyze rectifier fed DC drives with closed loop control. CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Code: B20EE3204 Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE3205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the FIR filter by using window techniques and know the finite word length effec		
 Co-3 Apply and analyze rectifier fed DC drives with continuous current mode operation. CO-3 Apply and analyze rectifier fed DC drives with closed loop control. Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems Co-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE3205 Course Code: B20EE3205 Course Code: B20EE3205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FT algorithms to find the DFT of Discrete sequence. CO-4 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-3 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-4 Apply Artificial Neural Networks to Identify Engineering Prediction Models CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Parzy Logic to Design Intelligent Controllers for Electrical Systems CO-5 Apply Partice Swarm Optimization to Identify Optimal Solutions of Engi		methods
 CO-4 Apply and analyze chopper fed DC drives with closed loop control. CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system CO-4 Apply various protective devices and its coordination techniques to distribution system CO-5 Apply various protective devices and its coordination techniques to distribution system CO-6 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-1 Apply Sampling theorem to analyze the Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-5 Apply Particel Swarm Optimization to Identify Deptimal Solutions of Engineering Problems CO-5 Apply Particel Swarm Optimization to Identify Deptimal Solutions of Engineering Problems CO-6 Apply Particel Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Apply Particel Swarm Optimization to Identify Optimal Solutions of Engineering Problems		
 CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE3205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-3 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 Course Tite: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Fuzzy Logic to Design Intelligent Controllers of Engineering Problems CO-5 Apply Partical Neural Networks to Identify Optimal Solutions of Engineering Problems CO-5 Apply Partical Neural Networks to Identify Optimal Solutions of Engineering Problems CO-5 Apply Partice Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-5 Apply Partice Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Apply Parti	CO-3	Apply and analyze rectifier fed DC drives with continuous current mode operation.
 CO-5 Investigate the control strategies for Induction motor Drives and slip power recovery schemes Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system CO-4 Apply various protective devices and its coordination techniques to distribution system CO-4 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-3 Apply FI algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by using window techniques and know the finite word length effects i FIR filter Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Purzey Logic to Design Intelligent Controllers for Engineering Problems CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Purzey Logic to Design Intelligent Controllers for Electrical Systems CO-6 Apply Purzey Logic to Design Intelligent Controllers for Electrical Systems CO-6 Apply Purzey Logic to Design Intelligent Controllers for Electrical Systems CO-7 Apply Purzey Log	CO-4	Apply and analyze chopper fed DC drives with closed loop control.
Course Code: B20EE3204 Course Title: ELECTRICAL DISTRIBUTION SYSTEMS CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20E23205 Course Code: B20E23205 CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects in FIR filter Course Code: B20EE3206 Course Course Code: B20EE3206 Course Code: B20EE3206 Course Course Code: B20EE3206 Course Code: B20EE3206 Course Course Code: B20EE3206 Course Code: B20EE3206 Course Code: B20EE3206 Course Code: B20EE3206 Course Code: B20EE3206 Course Code:	CO-5	Investigate the control strategies for Induction motor Drives and slip power recovery
 CO-1 Explore the types of Loads and Load Characteristics CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20E5205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Fuzzy Logic to Design Intelligent Controllers of Engineering Problems CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 CO-7 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-7 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system CO-4 Investigate the effect of PID Controller on system performance 		
 CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE3205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20E3206 Course Title: SOFT COMPUTING TECHNIQUES CO-3 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 	Course	Title: ELECTRICAL DISTRIBUTION SYSTEMS
 CO-2 Analyze the design considerations of primary and secondary distribution systems CO-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE3205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20E3206 Course Title: SOFT COMPUTING TECHNIQUES CO-3 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 	CO-1	Explore the types of Loads and Load Characteristics
 Co-3 Compute voltage drop and power loss and apply capacitive compensation for power factor correction and voltage control in a distribution system CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Title: SOFT COMPUTING TECHNIQUES CO-4 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Fuzzy Logic to Design Intelligent Controllers of Engineering Problems CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Investigate the time response of control system CO-7 Investigate the time response of control system CO-7 Investigate the effect of PID Controller on system performance 	CO-2	Analyze the design considerations of primary and secondary distribution systems
 CO-4 Illustrate types of substations and cables CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE3205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 	CO-3	Compute voltage drop and power loss and apply capacitive compensation for power factor
 CO-5 Apply various protective devices and its coordination techniques to distribution system Course Code: B20EE3205 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Artificial Neural Networks to Identify Engineering Prediction Models CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problem CO-5 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Investigate the effect of PID Controller on system performance 	CO-4	Illustrate types of substations and cables
 Course Title: DIGITAL SIGNAL PROCESSING CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-5 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 	CO-5	Apply various protective devices and its coordination techniques to distribution system
 CO-1 Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital filters CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Investigate the time response of control system CO-7 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		
 CO-2 Analyze discrete signals in the frequency domain and compute the linear and circular convolutions of discrete sequences CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-4 Investigate the time response of control system CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 	CO-1	Apply Sampling theorem to analyze the Discrete time signals, systems and realize digital
 CO-3 Apply FFT algorithms to find the DFT of Discrete sequence. CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects i FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-6 Investigate the time response of control system CO-7 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 	CO-2	Analyze discrete signals in the frequency domain and compute the linear and circular
 CO-4 Design the IIR filter by considering the given specifications. CO-5 Design the FIR filter by using window techniques and know the finite word length effects in FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-4 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problem CO-6 Investigate the time response of control system CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		
 CO-5 Design the FIR filter by using window techniques and know the finite word length effects in FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Artificial Neural Networks to Identify Engineering Prediction Models CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problems Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		
FIR filter Course Code: B20EE3206 Course Title: SOFT COMPUTING TECHNIQUES CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Artificial Neural Networks to Identify Engineering Prediction Models CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems Course Code: B20EE3207 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance		
Course Title: SOFT COMPUTING TECHNIQUESCO-1Examine the Feasibility of Applying Soft Computing TechniquesCO-2Apply Fuzzy Logic to Design Intelligent Controllers for Electrical SystemsCO-3Apply Artificial Neural Networks to Identify Engineering Prediction ModelsCO-4Apply Genetic Algorithm to Identify Optimal Solutions of Engineering ProblemsCO-5Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering ProblemCourse Code: B20EE3207Course Title: CONTROL SYSTEMS LABORATORYCO-1Investigate the time response of control systemCO-2Draw the Torque speed characteristics of AC and DC Servo MotorCO-3Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot.CO-4Investigate the effect of PID Controller on system performance		FIR filter
 CO-1 Examine the Feasibility of Applying Soft Computing Techniques CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Artificial Neural Networks to Identify Engineering Prediction Models CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problem Course Code: B20EE3207 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		
 CO-2 Apply Fuzzy Logic to Design Intelligent Controllers for Electrical Systems CO-3 Apply Artificial Neural Networks to Identify Engineering Prediction Models CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problem Course Code: B20EE3207 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		
 CO-3 Apply Artificial Neural Networks to Identify Engineering Prediction Models CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problem Course Code: B20EE3207 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		
 CO-4 Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems CO-5 Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering Problem Course Code: B20EE3207 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		
CO-5Apply Particle Swarm Optimization to Identify Optimal Solutions of Engineering ProblemCourse Code: B20EE3207Course Title: CONTROL SYSTEMS LABORATORYCO-1Investigate the time response of control systemCO-2Draw the Torque speed characteristics of AC and DC Servo MotorCO-3Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot.CO-4Investigate the effect of PID Controller on system performance		
Course Code: B20EE3207 Course Title: CONTROL SYSTEMS LABORATORY CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance		Apply Genetic Algorithm to Identify Optimal Solutions of Engineering Problems
 CO-1 Investigate the time response of control system CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 	Course	
 CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		Title: CONTROL SYSTEMS LABORATORY
 CO-2 Draw the Torque speed characteristics of AC and DC Servo Motor CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot. CO-4 Investigate the effect of PID Controller on system performance 		Investigate the time response of control system
CO-3 Analyze the stability of a control system by generating Root locus, Bode and Nyquist plot.CO-4 Investigate the effect of PID Controller on system performance	CO-2	Draw the Torque speed characteristics of AC and DC Servo Motor
CO-4 Investigate the effect of PID Controller on system performance		
Explore the performance of control system components	CO-4	Investigate the effect of PID Controller on system performance
	0.0-3	Explore the performance of control system components

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) Accredited by NAAC with 'A' Grade UG Programmes CE, CSE,ECE, EEE,IT&ME are Accredited by NBA

Course	Code: B20EE3208	
Course Title: LOGIC DESIGN AND MICROPROCESSORS LABORATORY		
CO-1	Develop Adders, Multiplexers, Encoders & Decoders using combinational logic circuits	
CO-2	Design Synchronous counters, shift registers using sequential logic circuits	
CO-3	Develop ALP to add8 - bit binary numbers, 2 - digit BCD numbers and pick largest &	
	smallest numbers using 8085 Microprocessor	
CO-4	Develop ALP to convert binary to BCD numbers and sorting array of 8-bit binary numbers	
CO-5	Interface different peripherals with 8085 Microprocessor	
	e Code: B20EE3209	
	Title: ELECTRICAL SYSTEM SIMULATION LABORATORY	
CO-1	Compute the Y-bus and solve Gauss – Seidel (GS) load flow, Economic Load Dispatch	
	using MATLAB Programming.	
CO-2	Compute the symmetrical components and LG, LLG fault currents using MATLAB	
	Programming / SIMULINK	
CO-3	Construct the model of swing equation for assessing transient stability, load frequency	
	control of single area system using MATLAB/ SIMULINK software.	
CO-4	Construct the simulation models to illustrate the operation of Rectifier, Inverter, Chopper,	
	AC Voltage controller and Cycloconverter using MATLAB/SIMULINK software.	
CO-5	Construct the various simulation models to illustrate the functioning of PF correction, Effect	
	of shading in PV array and GS load flow using PSCAD and ETAP softwares	
	Code: B20HS3203	
	e Title: SOFT SKILLS	
CO-1	Apply soft skills in the workplace and build better personal and professional relationships	
	making informed decisions	
CO-2	Participate in group discussions/group activities, exhibit team spirit, use language	
	effectively according to the situation, respond to their interviewer/employer with a positive	
	mind, make answers to the questions asked during their technical/personal interviews,	
	exhibit skills required for the different kinds of interviews (stress, technical, HR) that they	
	would face during the course of their recruitment process	